Converting Among Acceleration, Displacement, Velocity and Frequency

Table 1. Formulas

Example 1: Calculating Velocity when acceleration (10 g 's) and frequency
(5 Hz) are known.

```
V=gA/2\piF
V=386.0886*10/2*22/7*5
V=3860.886/(2*3.142 * 5)
V=3860.886/31.42
V=122.88 (inches per second)
```

Example 2: Calculating Displacement when
acceleration (10 g 's) and frequency (5 Hz) are known.

```
D=gA/2\pi}\mp@subsup{\pi}{}{2f2
D=(386.0886*10)/(2*(22/7)2 * 52)
D=3860.886/(2*484/49*25)
D=3860.886/2*9.87776*25)
D=3860.886/493.888
D=7.817 (inches)
```


As accelerometers measure acclerations, how do end users calculate such things as displacement and velocity?

Acceleration, displacement and velocity are mathematically related to each other as a function of frequency. If two values are known, the other two can be calculated using simple formulas

Left (Table 1) are formulas based on sinusoidal equations of motion where:
$D=$ displacement, inches, peak to peak

Example 3: Calculating Frequency when acceleration (10 g's) and displacement (7.817) are known.
$F=$ Square root of $\mathrm{gA} / 2 \pi^{2} \mathrm{D}$
$\mathrm{F}=$ Square root of $(386.0886$ * 10$) /\left(2\right.$ * $(22 / 7)^{2}$ * 7.817)
$\mathrm{F}=$ Square root of $(3860.886) /(2$ * 484/49 * 7.817)
$\mathrm{F}=$ Square root of (3860.886/2 * 9.87776 * 7.817)
$\mathrm{F}=$ Square root of $(3860.886 / 154.43)$
$\mathrm{F}=$ Square root of (25.00088)
$\mathrm{F}=5 \mathrm{~Hz}$
Example 4: Calculating Velocity when frequency (5) and displacement (7.817) are known.

```
V=\piFD
V=22/7 * 5 * 7.817
V=3.142 * 5 * 7.817
V=122.81 (inches per second)
```

The Vibration Design Center in Aliso Viejo, California spearheads Measurement Specialties' global initiative to expand its accelerometer and vibration sensing business with customers in the automotive, medical, military / aerospace and consumer goods industries. This center spearheads Measurement Specialties' platform sensing technologies in silicon MEMS, piezoelectric polymer film, piezoelectric ceramic and bonded gage.

Please call 949-716-5377 or email vibration@meas-spec.com for application assistance.

